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ABRSTRACT

We consider the motion of two rings of liquids with different viscosities
and densities lying between concentric cylinders that rotate with the sare
angular velocity fl. Gravity is neglected and interfacial tension is included,
We show that rigid motions are globally stable and that the shape of the in-
terface which separates the two fluids {s determined by a minimizing problem
for a potential P defined as the negative of the sum of the kinetic energies
of two rigid motions plus the surface energy of the interface. We shcw that
the stable interface between fluids has a constant radius when heavy fluid is
outside and J is larger than one, where J = =d’[[p]]0%/T where d 1s the mean
radius, [[p]] < O the density difference and T the surfacg tension. When J is
negative the heavy fluid is inside and the interface must be corrugated. The
potential of flows with heavy fluid outside is smaller, thus relatively more
stable, than when 1light. fluid is outside, whenever J I8 large or for any J
when the volume ratio m of heavy to light fluid is greater than one. These
results give partial explanation of the stability and shape of rollers of vis-
cous olls rotating in water and the corrugation of the free surface cf films
coating rotating cylinders.

AMS(MOS) Classifications: 76E99, 76T05, 76U05.
Key Words: Hydrodynamic Stability, Two Component Flow, Centrifuge.
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SIGNIFICANCE AND EXPLANATION

The authors study the stability of flows of two immiscible fluids between

two cylinders rotating at the same frequency. They show that this problem can

be reduced to the minimization of a certain functional. Necessary and suffi-

- >
cient conditions for the stability of ®centrifuged” configurations with the

heavier fluid on the outside, are given. It is shown that the viscosity plays

no role in the stability problem. This is different from shearing flows

between rotating cylinders, where it is in fact possible to have the heavier

fluid inside.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC and not with the authors of this report.




DR GRS

[ M R AN

399

\

Ty ’ R Y
LN ... .-.-.-.\.. DM S




s
L R LS. B I A “®a
-~ PO «®a” .

L

PO TSI I R e S P Sl Mal tad il daf We Gl LD el o2k g vy Y ryeye
O L St A e S S 9 L A AOASA AR ML WAL ah at il g . DA 5 b A i -
- - - - - - N -« - .. he .. -‘ g 4'_ ot

STABILITY OF RIGID MOTIONS AND ROLLERS IN
BICOMPONENT FLOWS OF IMMISCIBLE LIQUIDS
Daniel D. Joseph*", Y, Renardyz, M. Renardyz, and K. Nguyen"

1. INTRODUCTION

We consider the flow of two immiscible liquids with cifferent viscosities
and densities lying between concentric cylinders bdboth ¢f which rotate with the
same angular velocity R. We neglect gravity and include interfacial tension.
We study the stability of steady rigid-body rotation in which the two fluids
are arranged in two rings with a given volume ratio. We show that rigid-body
rotation is globally stable, and the interface shape between the two fluids {s
determined by a minimizing problem for a potential defined as the negative of
the sum of the kinetic energies of two rigid motions plus the surface energy
of the interface. We show that the interface between the two fluids has a
constant radius when the heavy fluid is outside and J is larger than one,
where J 1s defined in the abstract. This implies that centrifuged configura-
tions lie outside an interface of constant radius. We note that the stable
rollers of oil in water observed by Joseph, Nguyen and Beavers (1984) have
heavy fluid (water) outside an interface of essentially constant radius. The
rollers are maintained in nearly rigid motion by tne high viscosity; there is
no outer cylinder, and the motion of the water is not rigid. We show that the
interface on rigid motions with heavy fluid inside must be corrugated. Photo-
graphs of corrugated interfaces of 1liquid films coating cylinders rotating in
air can be found in the papers of Yih (1960) and Moffatt (1977). Yih (1969)
gave a linear stability analysis for films coating cylinders rotating in air
s and his results are consistent with ours. |
e The potential of flows with heavy fluid outside is smaller, thus rela- ‘
o tively more stable, than when light fluid is outside, when J is large or for

any J when the volume ratio m of heavy to light fluid is greater than one.
Tnis is consistent with the idea that configurations with heavier fluid outside

=
»
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should be more stable because of the centrifugal force and that if the inner
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fluid is heavier, the rigid motion should be less stable no matter what the
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viscosities. The stability of flows in which viscosity differences are ilmpor-
tant depend strongly on the viscosity ratio. Rigid-body rotlation involves no
shear. As a result, the mechanism which we call lubrication stabilization
(Renardy & Joseph, 1984), in which thin layers of the less viscous fluid occupy

regions of high shear, is absent,

2. EQUATIONS OF MGOTION AND INTERFACE CONDITIONS
Consider the flow of two immiscible liquids contained belween two infin-
ite concentric cylinders. The perturbed regions occupied by liquid 1 and 2 are

denoted respectively as
V,(t) = {r,6,x]a Sr S R(X,6,t), " < x <® 0S80 S 2n],
Vi(t) = {r,8,x|R(x,8,t) Sr sb, =< x <= 056 S 2n}.
The stress is given by
IT=-pl+S,S-= 2;1 D [ui. (2.1)

The equations of motion hold in each region

divug = 0, £ = 1,2, (2.2)
Py o ug - Ve + div Sy, (2.3)

where ug « erug + egvg * exWg, ¢ = p + pgr sin6, Dlul - -;—(Vg + D), p, and p,
are the densities and y, and y, are the viscosities. In all that follows g = 0. .
The cylinders at r = a and r = b rotate with some constant angular frequency
Q. At the interface [

F(x,r,e,t) = r - R(x,8,t) =~ 0, (2.4)
we have
R LV R LR
U T *R3e " 3 (2.5)
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We 2180 require that the jumps across

(03] = (2 = (),

in the velocity, the shear stress and the difference between the jump in the
normal stress and the surface tension force all vanish,

We are going to study spatially periodic solutions which are 2«/a periodic
in x and, of course, 2n periodic in 6. The volume of each component fluid is

prescribed by apecifying a mean radius
d® - R? (2.6)

where

() = g2 (),
(2.7)

2x/a 2%
[

((-)) def I ax

0 0

Our convention is the flufid with subscript 1 is on the inside. The fluid on
the inside can be heavy or light. We are interested in two cases

(A) The heavy fluid inside, a S r S Ry(e,x,t)
2  §
{Cpl] > o, d, = R, (2.8)
(B) The heavy fluid is outside, Rg(8,x,t) S r S Db
2 2
(lpl) <0, dg = Rg. (2.9)

The volume ratio of heavy to light fluid is

2 2
a4, - a? b? - dg

DA | ———T mB . (2.‘0)
b? - dA dB - a?

The volume of light fluid and the volume of heavy fluid is fixed, Indepenagent
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of whether it is inside or outside when my = mg. Then

2
2 2
a m, +a 2 b* « m,

B TV 2.11)

The jump equations at r =~ R are
([2]] =- 0,
=(((p)] + 2HT)n + ([S]] - n = O, (2.12)

where

2 2 2 2
RRog(1+R ) + RRyy(R™R ) - R¥(1+R ) = 2R = 2RRgRyRyq 213

2H = 2 < zzs/z
(R* + Re* RRx)

2H is the sum of the principal curvatures, T i{s the surface tensjon, and ns=

VE/|VF| and VF = e, - egRg = eyRy.

3. RIGID ROTATION OF TWO FLUIDS
The velocity

!Q - .e_eﬂl". (3.,)
and the pressure
2
P, = £ . p, (3.2)

where the constants (p,D) are (p,,D,) in V, and (p,D,) in V,, is a solution of
(2.2), (2.3) and (2.4) with S identically zero. We suppose that R(e,x,t), peri-
odic in x and 6, is prescribed and arbitrary. At rsR we have

£, « 4 g ., - .- .
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[{u) = o,
(3.3)
[(pel] = e £ S R1e [[D1J.
We cannot satisfy the differential equation
{(pel) + 2HT = 0, (3.4)

expressing the jump condition for the normal component of the stress, for an
arbitrary given surface R(6,x,t). We call (3.1) - (3.3) an "extended" rigid
motion and we prove that these motions are globally stable with the shape of
the interface, and possibly the placement of heavy and light liquid determined
by a new minimum principle of classical type.

&. PERTURBATION EQUATIONS
Let u,p be the velocity and pressure in the deformed domain and let

-~
2‘!0’2.

~

P=pPot?p
- where u, = egV(r), and po(r) is the associated pressure. The function _g. p and
:* S are perturbations. In designating components
i‘!
- U~ (u,v,w)
-
C:j:ﬁ we suppress the caret overbar., All these quantities are defined in V,(t) and
_1._ ¥,(t). For the moment we leave open the possibility that [{V]]) # 0, (for rigid
E:: motion [{V]] = 0). The equations governing u and p are
:::\
Y
o o
LY - -~ ~ LY - -
) PL(ZE *u* Yy *ug® Vu+u-Vule=-Vpe+?- s, (4.1)
"t Veue=o. (4.2)
l.l
x:_
pe.]
¢
S A e e
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The boundary conditions are

gxr-a) - gﬁr-b) = 0.
The interface conditions onr = R(x.e.t) are

(Cul] = ([w]] = {[vev]] = O

oR v+V BR
u=3t 'R 3

~((pIn + {511 * n = [[peIn + 2HTn

5. ENERGY EQUATIONS FOR NONLINEAR DISTURBANCES
" Introduce the following notations:

e = ! (*) av,
v

€D _ = (*)d I,
ot IE

where

2 2
dI = Rdedel*Re/R‘*Rx = Rdodx|VF|

and we are assuming that the disturbance flow i{s 2%/a periodic in x.

(4.3a,b)

(4.4)

(4.5)

(4.6)

To form the energy equation we multiply (4.1) by u, integrate over V, and
V,, add and use Reynolds transport theorem to show that
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For flow in circles with u, = egrQ we have

Z;ZE ' <p§ + Dlu,] * §_>- <puvr gg}

which vanishes on rigid motions. Moreover, since g = u - u, is continuous

- across I, we have

50 <[[§ *(pn + § gm),_ - 45-20 * {{-pn + § * nl) 7;

-Qg-go) * n(llpo1] + 2H‘r>z (5.2)

'] . L D)
PRI .

. .

« RAPURCRAC

where the last equality follows from (4.6). We next observe (see Joseph, II,
Eq. (96.11)) that

SIS
4 '.",l' /-
PR RN T

D
4 %

.
o

.
LI I
e @

d
<2HT2 . E>; " 3t L; TdI. (5.3)

Since T is constant, we have

(] l.l .l .
el fa

Lol




<2HT2 ‘n >2 -« T %((‘IR"R;OR’R; )

where ((+)) is defined in (2.7).

Moreover, using (2.5), we find that

H_ence ’

(- n ) = (IR .

Since [(p.]] = [[p]IR%R%/2 + ((D]] is a function of R alone, there is a scalar
function &R),

«R) = [(p300* 2L, (5.4)
such that
(tpedlr B - L (Cetr; (5.5)

in deriving (5.4) - (5.5), we used (2.6) to set

5

at ((R?)) = 0.

Finally, we show that, for rigid motions where u, * n = QRg/|VF|, we have

<g. * n([{pod] + 2HT)>z

= Q((RRg([[pel] + 2HT))) = © (5.6)

SR

o

E -, oy " ‘-'\ - ‘.‘.\“ ) ..\
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In deriving the first equality, we use 'n = VF/|VF|; then we note that since
{({po)] is a function of R alone, there §s a 2% perfodic m(R) such that

RoRllpol) = am(R)/26

which vanishes on integration. We next use the expression (2.13) to write

A A )

3
“ROR ) . 2| RxReR
|ve] |

Since R(6,x,t) is periodic in x and &, the last integral in (5.6) vanishes.
Collecting all these results, we find that

d(E+M)  _
st - D (5.7)

where

{[pl)a?
—5—

M- T(([R"R;*R’R;]'/‘)) - ((TR*=a*1*)). (5.8)

LR R R

The function M[R] is the variable part of a "potential energy" P[R] for rigid
motions. It is easily verified that
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«1Q=-

K, = (~((a*)) *+ ((R*)]p,a%8,
Ky = [((B) = ((R"))p,0%/8

is the kinetic energy of a rigid motion in region V, and V,, respectively. The
associated potential of this rigid motion is the negative of the kinetic ener-
gles plus the surface energy

P 98T (koK) vr[ dz
L

-C, _'r(([a’(hn;)m;]‘/’)) - [[pJI(R*))0%/8

=C,+ M (5.9)
where C, and C, are different constants, We may write (5.7) as

9%1’-)- - -D. (5.10)

Equations (5.7) and (5.10) were derived by D. D. Joseph.

In the next section we shall show that rigid motions are globally stable,
as is the case with one fluid, but that the stable configurations of the rigid
motions minimize P subject to the volume constraint (2.6).

It is useful to write the potential in a dimensionless form in which R = d
+ 8 and (6,x,1/a) are made dimensionless with d and A = &§/d. Then, to within
constants, we may define a dimensionless potential

P e (1) + (([(nA)*(m;) . A;]"’)) ¢ F(C280871), (5.11)

where

\ ‘. \‘ \~ -’ ...... . - -. ... -‘ . . “ .- .'. _-- ... R “
\ s\ \ ", _.:\'.\'. . :h‘ .\...-. .\. . ,‘._\, .} . . e ...:... _.‘.'._ X
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has the sign of [[p)). The constraint (2.6) implies that
((2a + 4?)) = 0. (5.12)

This shows that the average deviation A = -1 ¢« R/d from 2zero must be negative
if the volume of the two fluids is preserved.

It 1s necessary to remark that the représentation r = R(8,x,t) of the free
surface is not completely general and it loses its utility when the magni~-

tude || of the deviation from the cylinder is equal to
2 -a b
A= min[l 3 3 1]. (5.13)

It ]Al 2 Z. then the interface will touch one or the other of the cylinders,
and a smooth free surface will not be possible.
The linearized form of (5.11) for A near to zero is

P e X (12828« (5.14)
2 X e’ "

6. STABILITY OF RIGID MOTION
The following results concern solutions of the equations which are smooth

for all time.
Theorecz 1. Rigid motions are stable in the sense that periodic distur-

-------

bance of rigid motion must decay in the mean. We first note that D > 0 on all
non zero disturbances of rigid motion. We are considering the stability of
flows with heavy fluid outside, ~[(pl]] = p, = p, > 0, or inside, [[p)] > O.
These two situations, called (A) and (B) in Section 2, are distinct in that they
cannot be connected by time dependent motions with smooth interfaces. We
choose u to be a disturbance of one or the other of these two possibilities.
Then the positivity of D implies the decay of E ¢+ P, In fact, we could show
that there is ) depending on the viscosities and the densities, such that D 2
AE where ) depends on v,, vV, P, Pav ¥;» Mpe Integrating (5.10) from t = 0 to t,
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we find that
t
E(t) « P(t) = E(0) « P(O) - I D(t) dt
0
t
SE,+ P, - xl E(t) d1; (6.1)
0
it follows that
t
AJ E(1) dt S E(0) + P(0) - E(t) - P(t). (6.2)
0
Since P is bounded trom below we conclude that
E(t) and D(t) are integrable. (6.3)

Moreover, assuming that E goes to 0 as t + +o, P admits a finite limit as t

goes to ¢+=,

-{.

™ .

t:f Let us consider the limit configuration (E(=),P(=)) since E(=) = 0, this is

i"* a rigid motion. To show that P(e) is a minimum of the functional P as R |
t! varies we consider any rigid motion (E(0) = O, P(0)) and assume that this rigid |
;_'fi motion goes to the rigid motion (E(=) = O,P(=)) as t goes to +=, If P(0) #

EZ::: P(=), then the interface between the two liquids must have moved from the con-

._ figuration at t = 0 to the one at t = =, and in this motion D(t) > O on an in-

! terval with non zero measure. Then, from (5.10) :
r.' : |
- |
ho! |
.:$ - |
i P(=) -~ P(0) = ~I D(t) dt < O, (6.%)

L 0

=

N

N so that
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P(=) < P(0). (6.5)

Thus P decreases iI' every change of configuration between rigid motions. Since
P i3 a bounded from below functional of R, P must decrease to

P(e) » “"m) ";"r(m. (6.6)

where R? = d? and R is periodic and continuously differentiable in x and o.
We may describe the set of such periodic functions R with R? = d? as a one
parameter family R(¢). We assume that R(0) = R where

P(R) « " p(R) - :“ P(R(c)). (6.7)
We must have:
dP ~ dR -, el -,
dc [R(c)] = ~((R 3;(0)(28‘1‘ -—— 23r%)) = 0, (6.8)

where 2!71 denotes the curvature (2.13) evaluated on the minimizer R = ﬁ Since
R¥c) = d?, we have

(r 8 —-(o))) - 0, (6.9)

so that R -3-2(0) is orthogonal to constants. It follows now from (6.8) and

(6.9) that

20T + ((p2) B < ¢« 2ir « 111 BL, (6.10)

where ﬁ is the mean value of I.l
Equation (6.10) may be recognized as the differential equation arising

r > RN
s Oy % .v (O 8
RAC .‘]‘ « ‘. 1N

from the normal stress condition (2.12) on rigid motions.

y It now follows that extended rigid motions, which are globally stabdle,

::Zj are actually hydrodynamically admissible, with a balanced normal stress equa-
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tion, when the {nterface R = R is a minimizer of (6.6). The stable rigid
motions satisfy (2.5) in the form '

3R 3R
o-at’gﬁ.

where i-l is time independent in a rotating coordinate system.
Theorex 2. The stable configurations are those rigid motions which min-
imize P_among C'(x,0) functions R(x,6) satisfying the volume constraint (2.6).
Consider first case (A) in which the heavy fluid is outside, J > 0. If J >
1, then P given by (5.14) i{s a minimum when A =« 0. '
Theorem 3. The cylindrical interface wit.h constant radius R = d, {s

stable against small disturbances if and only if J 2 1.

It is of interest to ask when R = d is a global minimum of P among all
interfaces of the form re R(6,z) compatible with the volume constraint. This
question is answered by the following theorem of M. Renardy.

Theorem 4. The concentric interface R = d is a global minimum of P among
[

all interfaces r = R(8,z) satisfying (3.4) if and only if J &8 =———=3.
a
d

First we show that the criterion of theorem 4 is sufficient for stability.

Certainly we have P 2 Pe= TR« % 2% p,~p,)R* , and it is sufficient to show
that R = d ainimizes l; We set R? = d3(1+Y), hence Y is subject to the con-

2 2
straints -1 + -31 SYS -1+ %5 and ({Y)) = 0. We then have

PeTd ((WT*Y + % J (1+7)%)

«Td ((YTFF + 3 J (o1 - v[% .3 J])). (6.11)

We define

£(Y) « /T 4 Y ¢ % J (1+Y)2 - y[.;.

(6.12)

=) -
L
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The constant multiplying Y has been chosen such that f'(0) - 0. If J 2
y

—,
a

1 < -d']
a? b?

-1 ¢ ar -1 ¢ d].

The criterion is also necessary for a global minimum. We can choose R

then f has {ts minimum at Y « 0O, for Y {n the range

such that Rg = 0, and, by choosing a small (long waves) we can make R; as
small as we like, It follows that it is also necessary that R = d minimizes

P 2
P. If J < L) » then t[-l + %—;] < £(0), and the graph of f is sketched as

[ ¢

a2 2 i
Figure 1. If we draw the tangent from the point (-1 ¢+ :1. (-1 + -33)) as indi-

cated, it will touch the graph at a peint a,f(g)) to the right of Y = 0. and it
will intersect the line Y = 0 at a value below f(0). This means that we can

2
take a perturbation Y, alternating between the values -1 ¢ %—, and a, such that

({(v)) = 0, but ((£(7))) < £(0).
Turning next to case B in which the heavy fluid is inside J<O we find that

- 2
f(Y) is concave. Hence P will have minimizers only at boundary values -1 + :ﬂ

2
andg -1 + %, In an infinite cylinder, there will therefore be no minimizers of

P of the form r = R(6,z). In a finite cylinder, we cannot make R, arbitrarily
small without also making Y small, and there can be stable motions with heavy
fluid inside, which have a corrugated free surface, as in the experiments of
Yih (1960) and Moffatt (1977). It would be of interest to determine these cor-
rugated shapes as a solution for the minimum problem of P, If J is large, we
expect the amplitude of the corrugated surface to be also large and eventually

violate the constraints =1 + a <Y <=t ¢+ I

The results of this paper have some relevance for the problem of centri-

E_ fuging. Intuitively one expects that the heavy fluid will be outside if the
; rate 2 of rotation is large, even if the heavy fluid were initially on the
:. inner cylinder. The transport of fluid from the inner to the outer cylinder is
?'.- Y topologicallly complex process which cannot be handled in the frame of our
E smooth parameterization of the interface. The transport of fluid from the
. inner to the outer surface is also a physically complex process involving the
d
------- B T R
RN I A A R ol i
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rupture of adhesion at both walls and possibly internal fracturing and healing
of the liquids themselves, These pﬁysical processes are not well understood,
and they do not appear in our equations. Nevertheless, it i{s not unreasonable
to seek stable configuratfons among those which minimize P with respect also
to the position of heavy and light fluid.

We can compare the potentials P, and Pp for flow with heavy fluid fnside:
[(p]) > O and heavy fluid outside [[pl)] < O under the condition that the
volume m, defined in Section 2, is fixed. The total kinetic energy K, when the
heavy fluid with density p, is inside is given by

Q* 3 .
Kp = K, ¢+ K; = 9—'5— ((R;-a')) 4 2—’5-0— ((b"-RRA))

2 2
where ((RA” . ((dA))' When the heavy fluid with density p, is outside

QI g’ [}
Kg = Ki + Ky o Sp= ((0*R3)) ¢ 25— ((Ry-a%)

3 2
where ((RB)) . ((dB)). Using (2.10), with my = mg = m we find that

2 2 2 2 2
() - 22 ((ry)) ~ 2322
The potentials are

Pp = =K +T l:AI.

Pg = ~Kg *T |2B|

;. where
4.':'
-_'.:
-
. |2l = | ot
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is the area of I;. The difference in the potentials is
Pa - P = -Kp ¢ Kp ¢ T(lIAI-IIBI)

[(p))0?
8

((bvea®=R =R D) + T(|Tp|-| 25}

Here [[p)) = p, = p2 > 0. 1f Py > Pg then (B) with heavy fluid outside is more
stable. Since ((R?)) = ((d?)), we have

(((R*-d?]%)) = ((R%)) - ((d%)).
The potential difference may be written as

(e

]]Q’[ I : 2, 2 2
P, - Pg = —3 L((t» *va*-d,-dp)) - (([RA-dA] . [RB-GB]‘)) + T(lZAI"IiBI)

(6.1)

L] »
Now, using (2.11), we eliminate dA and dB

[(p1)0? | 2m(([(b%*a%]?)) 2 27 2 2
Pr-Pe-—3 [ SE (([RA-GAJ: * [Rs'ds]’”] * T[] - {8

(6.2)

AT Y

Consider now the case of uncorrugated interfaces with Ry = dp, Rg = dp, Ip =
2wd,, Ig = 2wdg. We find that

SR TR e TE e

(plIn?  (((b*a]))

where di and dp are given in terms of m by (2.11). If the volume ratio m of
heavy (p,) to light (p,) fluid is greater than one, then dj > dg. Hence Py > Pp
when m > 1. If there is only a small amount of heavy fluid, m < 1 and dg < dp
then Py > Pp if ((p))R%/T is large. 1n all these cases the configuration with
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where @) and og are given in terms of m by (2.11), If the volume ratio m of
heavy (p;) to light (p;) fluid is greater than one, then dy > dy. Hence P, > Pg
when m > 1, If there is only a small émount of heavy fluid, m < 1 and dg < d,
then Py > Pg if [[p)IR*T i1s large. In all these cases the configuration with
heavy fluid outside is more stable. If [[p])R*T is small enough, then P, <
Pgs and the configuration with heavy fluid inside is more stable. However our
earlier analysis showed that when the heavy fluid is inside, the Ra(e.x) which
minimizes P is not everywhere equal to dg.

T. STABILITY OF ROLLERS

" Rollers are viscous fluid bodies which rotate as rigid wheels in fluids of
smaller viscosity. These rollers have been observed (Joseph, Nguyen and ~
Beavers, 1983) in bicomponent flows of immiscible liquids in several different
flow configurations: on a cylinder rotating in a box, between the four cyle
inders of Taylors mill for studying straining flows, and separating dynamically
driven Taylor vortices between rotating cylinders,

The most interesting feature of the dynamics leading to the formation of
rollers is the fracturing of the viscous liquid at some critical level of the
stress, In this process the roller breaks away form the side wall and
relieves the high stress associated with no slip at the side wall. So in the
final, stable dynamics, rollers are lubricated by water and air on all sides.
The rollers rotate nearly as rigid bodies because they are so viscous. The
stability of roller;s. as our analysis suggests, depends on the fact that the
density stratification is such as to prevent the centrifuging of the roller,

-
.
b

.
1’

-
1@, %)

The viscosity ratio is probably not an important factor in the dynamics of

n\’
4y

stable rollers,

. .'r/‘h’\' ‘..

The water which surrounds the rollers in experiments is at rest near the
tank wall and cannot rotate rigidly. Therefore rollers are not a special case

y e
@ -
N
'
.«

of rigid motions studied in this paper. However the density stratification,
with water outside, does contribute to the stability of rollers, with a stabile
i2ing term [[pV2]])8? at the interface, where V is the common velocity of fluid
particles on either side of the interface and § is the surface deflection; here

1
[

assumed small.

. . P L R
e “otete ittty
,1. ".".",' A‘.v.'-'.

e
;-3 Rollers are unstable to non-axisymmetric disturbances when the angular
:j:? velocity is high enough. This instability is associated with viscous shearing,
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which becomes important at higher speeds and with a possible unstable distri-
" bution of angular momentum.

The low speed rollers are robustly stable. In our analysis we did not
consider gravity, but gravity does enter into the dynamics of the stable rolle
ers reported in the paper of Joseph, Nguyen and Beavers (1984) and here. In
experiments in which the top of the roller rotates in air the roller would
centrifuge out into the air were it not for gravity w.:ich on the small top
portion of the roller exposed to air, is nearly radial. A similar, but smaller
effect due to gravity occurs at the bottom of the roller which is pushed up by
gravity because the lighter oil is buoyant in water. Gravity tends to flatten
rollers into right circular cylinders. To a degree the diameter of stable
rollers can be controlled by gravity, with a tendency fo the roller to poke
" its head into the air. We are able to change the diameter of the rollers by
. changing the water level in the box. This effect of gravity is exhibited in
. plates 7.1 amc. Sketches of the side view of these plates is shown in Figure
7.1 a=c.

' The principal effect of gravity may be eliminated by submerging the
roller entirely in water, as in Plates 7.2(a) and (b). When the flattening
effects of gravity are absent the shape of the interface on stable rollers is
strongly influenced by interfacial tension, with bounding surfaces in nearly
\ - circular arcs, as in Figure 7.2(b). The pressure distribution in the water is

not a strong barrier to centrifuging and the dynamics of the roller in Plate

A TN |

7.2 are closer to case B of this paper in which the heavy fluid is on the

3

inside cylinder with a corrugated interface separating the two liquids.
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Plate 7.1: Roller of silicone oil (p = 0.95 gm/cec, y = 95,000 cp) in water at
different water levels. The rod is made of plexiglass, 2 inches in diameter,
rotates at 10 RPM.

(a) The roller is very nearly in a solid body rotation with small shearing by
water at the roller rim, Part of the roller is in water and the other in air.
The roller is very stable, held together by hydrostatic pressure in water and
gravity in air.
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Plate
7.1(b)

“r -

A L DN R 1

(b) Water i{s added to the box. The roller becomes larger by flattening out
dbut remains round and stable.

Plate
7.1(c)

&\i_‘—‘ R

IR, -,

0

P )

(¢) More water is added. The roller becomes even larger. The roller is now
completely submerged in water and is slightly out of round due to buoyancy.
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Figure 7.1(a): Sketch of the side view and front view of plate 7.1(a).

Figure 7.1 (a)

Figure 7.1(b)

FINE

Figure 7.1(b): Sketch of the side view and front view of Plate 7.1(b). Water
is added to the box., The diameter of the roller kecomes larger, The shape of
the roller changes, conserving volume,
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Figure 7.1 (c)
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Figure 7,1(c): Sketch corresponding to Plate 7.1 (c).
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Front view of a completely sulmerged roller rotating

Side view of the sulmerged roller of Plate 7
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20. ABSTRACT (cont.)

terface which separates the twn flulds i{s determined bty a minimizing prodblem
for a potential I defined as the negative of the sum of the kinetic energiles
of two rigid motions plus the surface energy of the interface. We shcw that
the stable interface between fluids has a constant radius when heavy fluid is
outside and J is larger than one, where J = -d*[[p]]0*/T where d i{s the mean
radius, [[p]] < O the density difference and T the surface tension. When J is
negative the heavy fluid is inside and the interface must be corru'gat.ed. The
potential of flows with heavy fluid outside is smaller, thus relatively more
stable, than when light. fluid is outside, whenever J is large or for any J
when the volume ratio m of heavy to light fluid is greater than one. These
results give partial explanation of the stability and shape of rollers of vis-
cous oils rotating in water and the corrugation of the free surface of films
coating rotating cylinders.
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